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a b s t r a c t

In this paper four ternary MAX phases, Ti3AlC2, Ti2AlC, Ti3Al(C0.5,N0.5)2 and Ti2Al(C0.5,N0.5), were fab-
ricated by hot pressing or hot isostatic pressing. The microstructures were characterized and found to
be comprised of plate-like grains, 70–130 �m in diameter and 5–10 �m thick. Because all compositions
traced fully reversible, reproducible, hysteretic loops during uniaxial cyclic compression tests they were
eywords:
eramics
lasticity
olid solution
odeling

classified as kinking nonlinear elastic (KNE) solids. When the results were analyzed using our recently
developed microscale incipient kink band (IKB) model, the various relationships predicted among the
three independently measured values – stress, nonlinear strain and dissipated energy – were exception-
ally well adhered to. From the results we estimate the critical resolved shear stresses, CRSS, of the basal
plane dislocations to range from 24 to 60 MPa. We also show that the relationship between the CRSS and
grain size is of a Hall-Petch type. The reversible dislocation density is estimated to be (1–9) × 1013 m−2

m ≈
at stresses that ranged fro

. Introduction

Kinking nonlinear elastic (KNE) solids – a recently identified
lass of materials – are so described because they deform non-
inearly, but fully reversibly, i.e. elastically by the formation of
islocation-based kink bands [1–6]. The only requirement for a
olid to be KNE is plastic anisotropy, a good measure of which is
he c/a ratio in hexagonal crystals. The latter insures that anything
ut basal slip is energetically unfavorable. KNE solids include the
AX phases (see below) [1,2,5,7,8], graphite [3], hexagonal closed

acked metals (Ti, Mg, and Co) [9,10], LiNbO3 [11], ZnO [12], mica
13] among many others.

Cyclic stress–strain curves of KNE solids are characterized by
arge, closed hysteretic loops. The first KNE solid identified was
i3SiC2 [5], which is the most studied member of the Mn+1AXn

hases (or MAX phases). The MAX phases are machinable, layered
ernary carbides or nitrides, where M is an early transition metal, A
n A group element, X carbon and/or nitrogen, and n = 1–3 [14–16].

ore recently, we have shown that Ti2AlC [1] and Cr2GeC [7] are

NE solids. All MAX phases are believed to be KNE solids because
f their high c/a ratios [1,2], which, as noted above, ensures plastic
nisotropy.

∗ Corresponding author. Present address: School of Materials Science and Engi-
eering, Henan Polytechnic University, 2001, Century Avenue, Jiaozuo, Henan
54100, China. Tel.: +86 391 3986936; fax: +86 391 3986908.

E-mail address: zhouag@hpu.edu.cn (A.G. Zhou).

925-8388/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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300 to 650 MPa.
© 2010 Elsevier B.V. All rights reserved.

The KNE behavior of the MAX phases is affected by several fac-
tors. Currently, the effects of two microstructure variables, grain
size [2,5,17] and porosity [1,8], are reasonably well understood. At
comparable stress levels, coarse-grained samples have larger hys-
teretic loops than their fine-grained counterparts [2,5,17]; porous
samples have larger loops than their dense counterparts [1,8]. In our
previous work on Ti2AlC [1] we showed that a 10% porous sample
dissipated more energy per cycle per unit volume Wd on an abso-
lute scale than its fully dense counterpart. This result is probably the
strongest evidence to date that our conjecture is valid for the sim-
ple reason in that it eliminates any mechanisms, such as dislocation
pileups, that scale directly with the volume of the material tested.
It is, however, in full agreement with our IKB model in that kinking
is a form of plastic instability, or buckling, and thus a less rigid solid
is more prone to kinking that a fully dense one. Similar conclusions
were reached for porous Ti3SiC2 samples, where the enhancements
in Wd could be accounted for by a reduction in shear moduli, G [8].

One of the attractive attributes of the MAX phases, and one that
should in principle render them technologically potentially quite
useful, is the very large combinations of solid solution possibili-
ties. Both the M- and A-atoms can be substituted for each other,
with concomitant effects on properties. Of special interest in this
work are substitutions on the X-sites; when C is replaced by N, a

significant solid solution hardening effect is observed at room tem-
perature [15]. As far as we are aware, Ref. [15] is the only paper in
which the effect of solid solutions on the X-sites on the mechanical
properties of MAX phases has been explored in any detail. Others
have focused on solid solutions on the A- [18,19] or M-sites [20–22].

http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jallcom
mailto:zhouag@hpu.edu.cn
dx.doi.org/10.1016/j.jallcom.2010.03.099


A.G. Zhou, M.W. Barsoum / Journal of Alloy

F
2
t
W

d
p
i
[
q
c
r
a
t
s

l
o
p
i
e
g
L
r
m
h

s
o
T
f
s
[
h
b
d
o
[

2

l
t
t

�

w
i
t

ig. 1. (a) Schematic of a thin elliptical IKB with length of 2˛ and width, or diameter,
ˇ. (b) Typical stress–strain curve for a KNE solid. The various parameters needed
o describe the curve are labeled. The energy dissipated per cycle per unit volume,

d , is the hatched area enclosed by the loops.

Substituting N for C in Ti2AlC and Ti3AlC2 [23] results in a
ecrease in unit cell parameters and a concomitant increase in
honon conductivity and shear moduli [23,24]. Somewhat surpris-

ngly, the substitution of C by N resulted in a decrease in bulk moduli
23,24]. Replacing all the C by N also results in – depending on the
uality of the samples – either an increase or a decrease in phonon
onductivity [23]. These anomalous results – most importantly the
eduction in elastic moduli with a reduction in unit cell parameters
nd presumably stronger bonds – have been explained by invoking
hat the presence of vacancies on the N and/or Al sites as the C is
ubstituted by N [23].

In addition to our work, there have been a few papers in the
iterature in which fully reversible stress–strain loops have been
bserved in different, diverse materials [25–31] and in the MAX
hases [32–35]. In the case of Mg, most authors ascribe this behav-

or to reversible twinning [28–30]. Orlovskaya et al. [25] and Hao
t al. [26,27] concede they have no good explanations, and sug-
est that KNE mechanism is a possibility for the deformation of
a0.6Sr0.4FeO3 perovskite and titanium alloys, respectively. Most
ecently, the kink band model was considered to explain the defor-
ation of some clays [36] and ice [37]. None of these papers,

owever, tested the KNE idea; it was only briefly alluded to.
The purpose of this paper is to examine the effects of X-site sub-

titutions and unit cell structures on the kinking nonlinear response
f Ti3AlC2 and Ti2AlC and their solid solutions, Ti2Al(C0.5N0.5) and
i3Al(C0.5N0.5)2—henceforth referred to as Ti3AlCN. The only dif-
erence between Ti3AlC2 and Ti2AlC is the number of TiCx layers
eparating the Al layers: in Ti3AlC2 there are two, in Ti2AlC, one
14]. The solid solutions, Ti2Al(C0.5N0.5) and Ti3AlCN, on the other
and, have identical unit cells as their corresponding end mem-
ers, except that half of the C atoms are replaced by N atoms. Before
escribing the experimental details it is important to briefly review
ur KNE model, which has been described in detail in previous work
1,2,9,10].

. KNE model

Frank and Stroh (F&S), considered an elliptic kink band, KB, with
ength, 2˛, and width, 2ˇ, such that ˛ � ˇ (Fig. 1a) and showed that
he remote critical axial stress, �t, at the polycrystal level, needed
o render such a subcritical KB unstable is given by [2,38]:

�t

√
4G2b�c

(
b

)

> �c ≈

M
≈

2˛�2
ln

�cw
(1)

here �c, is the local critical shear stress, at the single grain scale. M
s the Taylor factor relating �t, to �c; G is the shear modulus and b is
he Burgers vector; w is related to the dislocation core width [38].
s and Compounds 498 (2010) 62–70 63

In our MAX phase work to date, we equated the grain dimension
along the [0 0 0 1] direction – i.e. normal to the direction of easy slip
– with 2˛ [2,8]. If 2˛ is known, then w can be estimated from Eq.
(1) making use of the experimentally determinable �t (see below).
�c is critical kinking angle calculated assuming [9,38,39]:

�c = b

D
≈ 3

√
3(1 − �)�loc

2G
≈ 3

√
3(1 − �)
8�e

(
b

w

)
(2)

where � is Poisson ratio and �loc is the local shear stress needed to
nucleate a dislocation pair; D is the distance between dislocation
loops along 2˛ (Fig. 1a). If one assumes, �loc ≈ G/30, then �c is of
the order of 3◦. Note that assuming G/30 implicitly assumes w = b
[9]. If as assumed here, w = 5b, then �c is of the order of 0.06 rad or
1.7◦.

An IKB consists of multiple parallel dislocation loops (Fig. 1a).
As a first approximation we assume each loop is comprised of two
edge and two screw dislocation segments with lengths, 2ˇx and
2ˇy, respectively. The latter are related to the applied stress, � and
2˛, assuming [10,38]:

2ˇx ≈ 2˛(1 − �)
G�c

�

M
and 2ˇy ≈ 2˛

G�c

�

M
(3)

The formation of an IKB can be divided into two stages: nucle-
ation and growth [9]. Since the former is not well understood, our
model only considers IKB growth from 2ˇxc and 2ˇyc to 2ˇx and 2ˇy,
respectively. The dislocation segment lengths of an IKB nucleus, ˇxc

and 2ˇyc, are presumed to pre-exist, or are nucleated during pre-
straining. The values of 2ˇxc and 2ˇyc are estimated from Eq. (3),
assuming � = �t; the latter is experimentally obtained (see below).

It follows that for � > �t, the IKB nuclei grow and the IKB-induced
axial strain resulting from their growth is assumed to be given by
[10]:

εIKB = �VNk�c

k1
= Nk�c4�˛(ˇxˇy − ˇc,xˇc,y)

3k1

= 4�(1 − �)Nk˛3

3k1G2�cM2
(�2 − �2

t ) = m1(�2 − �2
t ) (4)

where m1 is the coefficient before the term in parentheses in the
fourth term; Nk is the number of IKBs per unit volume; �V is the
volume change due to the growth of one IKB as the stress increases
from �t to �. It follows that the volume fraction, vf , of the material
that is kinked is given by V × Nk. The factor k1 relates the volumetric
strain due to the IKBs to the axial strain along the loading direction.
The value of k1 depends on the texture of samples and ranges from
1 to 2. If samples are without texture, k1 can be assumed to be 2.
For example, Reed-Hill et al. [40] assumed k1 = 2 for their work on
Zr. Herein k1 = 2 was also assumed.

The energy dissipated per unit volume per cycle, Wd (shaded
area in Fig. 1b) resulting from the growth of the IKBs from ˇic to ˇi
is given by [10]:

Wd = 4˝�Nk˛

D
(ˇxˇy − ˇxcˇyc)

= 4�(1 − �)Nk˛3

G2�cM2

˝

b
(�2 − �2

t ) = m2(�2 − �2
t ) (5)

˝ is the energy dissipated by a dislocation line sweeping a unit
area. Thus, ˝/b should be proportional, if not equal, to the critical
resolved shear stress, CRSS, of an IKB dislocation loop. Herein and

in our previous work, we show that to be the case [9,10].

Combining Eqs. (4) and (5) yields:

Wd = 3k1
˝

b
εIKB = m2

m1
εIKB (6)
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Fig. 2. Optical micrographs of (a) Ti3AlCN before annealing, (b) Ti2Al(C

Assuming the IKBs are cylinders with radii ˇav, then the
eversible dislocation density, 	rev, due to the IKBs is given by:

rev = 2�Nk2˛ˇav

D
= 4�Nk˛ˇav�c

b
(7)

Experimentally (see below) one can determine �t and 3k1(˝/b).
he estimation of ˝/b only requires knowledge of k1 in Eq. (6).

To recap: Once nested loops (see below) are obtained and the
arious relationships, viz. εIKB vs. �2, Wd vs. �2, and Wd vs. εNL, are
lotted, Eq. (6) is used to estimate ˝/b, assuming k1 = 2. Experi-

entally, m1 and m2 can be determined from the slopes of εIKB vs.

2 and Wd vs. �2 plots, respectively. It follows that if our assump-
ions are correct, and more importantly, if the micromechanism
ausing the dependence of εNL on � (i.e. Eq. (4)) is the same as the
ne responsible for Wd (Eq. (5)), then the ratio m2/m1 should equal
fore annealing, (c) Ti3AlCN after annealing, (d) Ti3AlC2, and (e) Ti2AlC.

3k1(˝/b). In other words, if both expressions give the same values
for ˝/b that would be strong evidence that our assumptions are
correct and more important that the same micromechanism that
results in the parabolic dependence of � on εNL is also responsible
for Wd.

3. Experimental details

The Ti3AlC2 sample was made from stoichiometric mixtures of Ti powder (-
325 mesh, 99.5%,), Al powder (-325 mesh, 99.5%), and graphite powders (-300
mesh, 99%) all from Alfa Aesar, Ward Hill, MA. After 4 h mixing by ball milling,

the powders were annealed at 625 ◦C for 3 h in a vacuum hot press followed
by sintering at 1400 ◦C for 1 h with a load that corresponded to a pressure of
∼45 MPa.

The Ti2AlC samples were prepared by cold isostatic pressing Ti2AlC powders
with an average particle size, d50 = 8 �m (Kanthal, AB, Sweden), followed by pres-
sureless sintering at 1500 ◦C for 1 h in flowing Ar [1].
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Fig. 3. SEM micrographs of (a) Ti3AlCN before annealing, (b) Ti3AlCN a

The Ti3AlCN and Ti2AlC0.5N0.5 samples were made from stoichiometric mixtures
f Ti, Al, AlN (-200 mesh, 99.0% Cerac, Milwaukee, WI) and graphite powders after
vernight ball milling and cold pressing to ≈600 MPa. The green bodies were pre-
intered in a vacuum furnace at 525 ◦C for 2 h, then at 625 ◦C for 10 h. The pre-
intered pellets were then reacted and densified in a hot isostatic press (HIP) at
emperature of 1400 ◦C under a pressure of 100 MPa for 10 h [41]. To grow the solid
olution samples’ grains, they were annealed at 1400 ◦C for 48 h in flowing Ar gas.

X-ray diffraction, XRD (Siemens D-500) was used to identify the phases present.
scanning electron microscope, SEM (FEI/Phillips XL30, Hillsboro, OR) was used

o examine the fractured surfaces and an optical microscope, OM (Olympus

MG-3, Tokyo, Japan) to examine polished and etched surfaces. The etchant was
F:HNO3:H2O = 1:1:1 [16].

The details of the compression experiments can be found elsewhere [1,2,42].
riefly, 9.7 mm diameter, 312 mm long cylinders were electro-discharge machined
nd cyclically compressed to different stress levels using a hydraulic testing machine
MTS 810, Minneapolis, MN), supplied with a controller (Microconsoler 458.20,
nealing, (c) Ti2Al(C0.5N0.5) after annealing, (d) Ti3AlC2, and (e) Ti2AlC.

MTS). The strain was measured using an extensometer (MTS 632.59C-01), with a
gauge length of 25 mm, directly attached to the samples. In most KNE solids, a small
plastic deformation is usually recorded during the first cycle; all subsequent cycles
to the same stress are closed and fully reproducible. The analysis was carried out on
the latter, and for the most part, are the ones shown here.

4. Results

4.1. Microstructural characterization
The purity and lattice parameters of as-synthesized samples can
be calculated from XRD spectra (not shown) and were reported in
previous papers [15,41,43]. All samples were predominantly single
phase with impurities of ∼5 vol.% TiC and ∼3 vol.% Al2O3. The a- and



6 Alloys and Compounds 498 (2010) 62–70

c
t
F
a
w
c

h
o
r
s
d
g
s
s
i
c
m
d
w

a
(
a
t
t
o
p
e
n
c
e
o
o

a
c
r
r
t
m
u

4

f
A
p
A
A
f
s
t
a
t
r
e

T
m
m
g
a
p
i

Fig. 4. (a) Stress–strain curves of Ti2Al(C0.5N0.5) sample—progressively shifted to the
right for clarity. Curves A–D are for an un-annealed sample by the testing sequence
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-lattice parameters of Ti3AlCN were 3.0404 Å and 18.414 Å, respec-
ively [41]; those of Ti3AlC2 were a = 3.0654 Å and c = 18.487 Å [43].
or Ti2AlC0.5N0.5, a = 3.021 Å, c = 13.610 Å and for Ti2AlC, a = 3.051 Å
nd c = 13.637 Å [15]. Clearly, and in full agreement with previous
ork, the solid solutions had smaller lattice parameters than their

orresponding C-containing end members.
OM and SEM micrographs of some of the samples fabricated

erein are shown in Figs. 2 and 3, respectively. OM micrographs
f the as-fabricated Ti3AlCN and Ti2Al(C0.5,N0.5) samples, shown
espectively in Fig. 2a and b, showed they comprised two grain
izes; large plate-like grains, and smaller equiaxed grains. The stark
ifference in the grain sizes is more clearly shown in the SEM micro-
raph of a Ti3AlCN fractured surfaces (Fig. 3a). The Ti2Al(C0.5,N0.5)
amples looked almost identical to those of Ti3AlCN and are not
hown. This duplex microstructure is similar to that observed
n Ti3SiC2 [44], and occurs when the holding time at the pro-
essing temperatures is insufficient for the full coarsening of the
icrostructure to occur. Because grain growth is faster along the a-

irection than the c-direction, the latter grow as hexagonal plates,
ith their large dimension along the a-direction [44].

To rid the solid solutions of the fine-grains, they were annealed
t 1400 ◦C for 48 h. From the resulting microstructure of Ti3AlCN
Figs. 2c and 3b) it is clear that the sample remained fully dense
nd that most of the small grains disappeared, with little growth in
he size of the coarse grains. In the case of Ti2Al(C0.5N0.5), in addi-
ion to the disappearance of many of the smaller grains, a multitude
f pores appeared (Fig. 3c). The reasons for the formation of these
ores are not understood at this time, but may be due to an incipi-
nt dissociation and the formation of nitrogen gas. The formation of
itrogen gas and possible loss of Al at high temperatures can also
onvert Ti2Al(C0.5N0.5) to TiC. In a previous paper [8], the influ-
nce of porosity and TiC impurities on the nonlinear deformation
f Ti3SiC2 was discussed in detail. Herein, the discussion is focused
n the effect of grain size.

Figs. 2d, 2e, 3d and 3e show the microstructures of the Ti3AlC2
nd Ti2AlC samples, respectively. When these micrographs are
ompared to those of annealed Ti3AlCN (Figs. 2c and 3b), it is
easonable to assume that all samples used in this work had compa-
able plate-like grains 70–130 �m in diameter, that were 5–10 �m
hick. For calculation purposes, however, the values of 2˛ for all

icrostructures were calculated from their respective �t values
sing Eq. (1) (see below).

.2. Cyclic compression results

Typical stress–strain curves – progressively shifted to the right
or clarity – for the Ti2Al(C0.5N0.5) sample are shown in Fig. 4a.
t stress levels below 400 MPa, the response of the virgin sam-
le (curve A) was linear elastic with a Young’s modulus of 291 GPa.
t 620 MPa, fully reversible, hysteretic loops (curve B) are present.
t 720 MPa, the hysteretic loops are larger (curve C) but are not

ully reversible; a very small plastic deformation is recorded at this
tress. It is important to emphasize that the extent of the plas-
ic deformation is quite small. When the sample was unloaded,
nd reloaded to 620 MPa (curve D) the loops were slightly larger
han upon loading the first time, i.e. curve B. When the sample was
eloaded to a stress of 400 MPa, a small loop is observed where none
xisted for the virgin sample (compare internal loop in D, with A).

Compared with this fully dense sample, the annealed
i2Al(C0.5N0.5) sample, curve E, showed a much lower effective
odulus and large loops even at 250 MPa. The values of the Young’s

oduli determined from the slopes of the dashed lines that are tan-

ent to the loops during initial unloading (see Fig. 4) were in good
greement with values reported in the literature on similar sam-
les measured by ultrasound [23] and shown in the second column

n Table 1.
from A to D. Curve E is for the annealed sample. (b) Stress–strain curves of Ti3AlCN,
Ti3AlC2 and Ti2AlC.

Fully reversible hysteretic stress–strain loops were also
recorded for Ti3AlCN, Ti3AlC2 and Ti2AlC (Fig. 4b). At ∼300 MPa
– horizontal line in Fig. 4b – the response of un-annealed Ti3AlCN
is linear elastic. Annealing reduces the threshold stress and fully
reversible loops are observed at stresses <300 MPa (Fig. 4b). Note
the Young’s moduli for Ti3AlCN did not change upon annealing;
those for Ti2Al(C0.5N0.5) did, presumably as a result of the formation
of porosity.

Both the Ti3AlC2 and Ti2AlC samples exhibited similar loops
(Fig. 4b). Compared with Ti3AlC2, Ti2AlC has a lower Young’s mod-
ulus (Table 1), but larger hysteretic loops at ∼300 MPa.

4.3. Application of KNE model
Based on the preceding discussion, the mechanical hysteresis of
a KNE solid can be characterized by three parameters, �, εNL and
Wd—listed in Table 2. According to Eqs. (4)–(6), plots of εNL vs. �2,
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Table 1
List of physical constants, E, G, �, used in calculations. The values of 2˛ are calculated from the �t listed in column 6, obtained experimentally. The last column lists the values
of �t estimated from the point at which the stress–strain curves deviate from linearity. The values listed below for Ti2AlC are different than those reported previously [1],
because the assumed value of M (see below) was changed from 2 to 3. Also included are results for Ti3SiC2 and Cr2GeC [7]. With the exception of Cr2GeC, w and b were
assumed to be 5b and 3.07 Å, respectively. b for Cr2GeC is 2.95 Å. Unless otherwise noted, elastic properties were obtained from Ref. [23].

E (GPa) G (GPa) � 2˛ (�m) �t
a (MPa) �t

b (MPa)

Ti3AlC2 298 124 0.2 10 244 205
Un-ann. Ti3AlCN 330 137 0.2 7 317 286
Ann. Ti3AlCN 0.2 22 180 160
Ti2Al(C0.5,N0.5) 290 123 0.2 4.1 376 295
Ti2AlC 277 118 0.2 18 170 98
Ti3SiC2 325 144 0.2 42 138 –
Cr2GeC 245 [7] 80 [7] 0.3 26.7 90 –

a From Wd vs. �2 plots (Fig. 5b).
b From stress–strain curves (Fig. 4).

Table 2
List of stress �, nonlinear strain, εNL, and dissipated energy Wd for Ti3AlC2, Ti2AlC, Ti2Al(C0.5N0.5) and Ti3AlCN samples tested herein.

� (MPa) εNL Wd (MJ/m3) m1 (MPa)−2 m2 (MPa)−1 m2/m1 (MPa)

Ti3AlC2

280 0.00017 0.011

2.2 × 10−9 4.9 × 10−7 217
349 0.00025 0.029
417 0.00038 0.054
486 0.00051 0.087

Ti2AlC

205 0.00023 0.015

6.9 × 10−9 9.7 × 10−7 141
237 0.00032 0.027
271 0.00042 0.042
306 0.00059 0.061
336 0.00071 0.085

Ti2Al(C0.5N0.5)

462 0.00018 0.048

1.7 × 10−9 6.2 × 10−7 370
511 0.00024 0.073
561 0.00034 0.102
610 0.00044 0.146

Ti3AlCN
un-annealed

321 0.00010 0.009

1.4 × 10−9 4.4 × 10−7 312
426 0.00017 0.028
526 0.00033 0.074
629 0.00050 0.136

156 0.00008 0.001

W
i

o
f
m
E
6
s
a

(

T
C
7
c

Ti3AlCN
annealed

206 0.00009 0.006
255 0.00014 0.015
305 0.00023 0.031

d vs. �2 and Wd vs. εNL should all yield straight lines, as observed
n Fig. 5. The lowest correlation coefficient, R2, value is >0.98.

Table 1 lists the physical constants assumed, as well as the values
f 2˛ calculated from �t – listed in column 6 – using Eq. (1) and �c

rom Eq. (2). The threshold stress, �t, was obtained by two different
ethods. The first is from the Wd vs. �2 plots (Fig. 5b). According to

q. (5), the x-axis intercept in Fig. 5b is �t, referred to as �∗
t (column
in Table 1). The second method is from the point at which the
tress–strain curves deviate from linearity, henceforth referred to
s �‡

t (column 7 in Table 1). The one used to calculate 2˛ is �∗
t .

Lastly, based on the results shown in Fig. 5, Table 1 and Eqs.
3)–(7), the values of ˝/b, Nk, 2ˇav,c and 2ˇav, 	rev were calculated

able 3
alculated values of ˝/b, Nk and 2ˇav,c , the latter calculated at the �∗

t values listed in Tabl
and 8, respectively. The last 2 columns compare the nonlinear strains calculated from

olumn 9 and those experimentally measured (last column). For all cases, M = 3, w = 5b, k

˝//b (MPa) Eq. (5) ˝/b (MPa) Eq. (6) Nk (m−3) (1/Nk)1/3 (�

Ti3AlC2 36 36 1.8 × 1016 4
Un-ann. Ti3AlCN 53 53 3.8 × 1016 3
Ann. Ti3AlCN 30 31 2.5 × 1015 7.4
Ti2Al(C0.5,N0.5) 62 62 2.0 × 1017 1.7
Ti2AlC 24 24 8.0 × 1015 5
Ti3SiC2 30 30 4.9 × 1014 13
Cr2GeC [7] 22 22 3.6 × 1015 6.6
2.8 × 10−9 5.0 × 10−7 182

and are listed in Table 3. In all the calculations, M and k1 were
assumed to be 3 and 2, respectively. For why M = 3 refer to [45].

5. Discussion

Clearly all solids tested herein are KNE solids, with the unit cell
structure, solid solution, grain-size distributions and preload his-

tories all influencing �t and the shapes and areas of the hysteresis
loops.

In previous studies on the MAX phases, it was assumed that �t

was independent of deformation history [1,2,5]. It is now apparent
this is not always the case. For example, during the nanoindenta-

e 2 The 2ˇav and 	rev values at the � values listed in column 9 are listed in columns
Eq. (4) using the values reported in this table and the measured � values listed in
1 = 2 and the 2˛ values listed in Table 2 were assumed.

m) 2ˇav,c (�m) 2ˇav (�m) 	rev (m−2) � (MPa) εNL Cal. εNL Meas.

0.48 0.95 4.3 × 1013 486 0.00052 0.00051
0.4 0.8 5.4 × 1013 629 0.00056 0.00050
0.7 1.2 1.7 × 1013 305 0.00026 0.00023
0.3 0.5 1.0 × 1014 610 0.00064 0.00044
0.65 1.3 4.8 × 1013 336 0.00078 0.00071
1.0 2.6 1.3 × 1013 366 0.00044 0.00038
0.8 4.6 1.0 × 1014 525 0.0059 0.0060
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Fig. 5. (a) Plot of εNL vs. �2 for the samples tested in this paper. (b) Plot of Wd vs. �2.
(c) Plot of Wd vs. εNL.
s and Compounds 498 (2010) 62–70

tion of single crystals of ZnO, GaN, LiNbO3, and sapphire pop-ins
resulted in the formation of multiple domains that rotate basal
planes into directions of shear, in some cases greatly enhancing
IKB activity. The same is true of polycrystalline Mg [10,28] Zr [40]
and Co; a small plastic deformation is sometimes needed to initiate
IKB activity. The results shown in Fig. 4a, confirm this notion: it was
only after the sample was loaded to 700 MPa that loops were seen at
400 MPa. The mechanism by which this occurs is unclear, but the
formation of dislocation pileups and/or mobile dislocation walls,
MDWs, maybe implicated. Microcracking and grain boundary slid-
ing cannot be ruled out at this time. This comment notwithstanding,
it is hereby acknowledged that IKB nucleation is not understood.
However, better understanding is important because if understood,
it may be possible to endow otherwise brittle solids with some
limited ductility.

The fact that at the same stress level the porous Ti2Al(C0.5,N0.5)
sample can dissipate significantly more energy than a fully dense
one (compare curve E with other curves in Fig. 4a), is not a surprise
and is in line with previous results [1,8]. It is however, an impor-
tant clue as to what is happening, and strongly confirms that what
is observed is due to IKBs because, as we noted previously [1], it
essentially eliminates any deformation mechanism that scales with
the volume of the material.

The effect of n, viz. the number of Tin+1Xn layers, on kinking is
best seen in Fig. 4b. Ti2AlC is a softer material than Ti3AlC2 and con-
sequently, at the same stress level, has larger hysteretic loops. The
extra TiC layer also increases ˝/b from ≈24 to 30–36 MPa (Table 3).

When the two un-annealed solid solution compositions are
loaded it is apparent that the �ts increase significantly. The simplest
explanation is that the small equiaxed grains (Figs. 2a, 2b and 3a)
prevent or constrain the larger grains from kinking. The small
grains, whose influence is essentially the opposite of pores, result
in a decrease in the average 2˛, and hence an increase in �t. The
values of 2˛ calculated for the various microstructures are listed
in Table 1, and are comparable to the widths of the grains shown
in Figs. 2 and 3. Note that the values of 2˛ calculated from the
model are an “equivalent” average grain size. These values will
always be greater than the largest grains. It is also for this reason
that the values of �t calculated from Wd vs. �2 plots are always
greater than those directly obtained from where the stress–strain
curves deviate from linearity. The latter depend on the largest and
most favorably oriented grains to kinking rather than the “aver-
age”.

The changes in ˝/b for these two compositions is less clear, how-
ever. Based on the results shown in Fig. 5b and the values of ˝/b
listed in Table 3, it would be reasonable to conclude that what is
observed is an increase in the CRSS due to solid solution strengthen-
ing. And while tempting and, possibly, at least partially, correct the
results for the annealed Ti3AlCN sample suggest otherwise. Since it
is not clear why annealing would result in an almost 2-fold decrease
in ˝/b this explanation is suspect.

The second, and more likely explanation, is that the effect
observed is essentially a Hall-Petch effect in which ˝/b, a measure
of “yield”, is a function of grain size. This explanation is bolstered
by the results shown in Fig. 6, where ˝/b is plotted as a function
of 1/

√
2˛. A least squares analysis of the data result in an R2 > 0.93.

Why the intercept of the best-fit line intersects the x-axis instead
of the y-axis as it should is not clear at this time and leaves the door
open to other interpretations. Note we have previously shown that
in Ti3SiC2, ˝/b is also a function of grain size [2].

Regardless of the values obtained for the various microstruc-

tures, the fact that the values of ˝/b calculated by Eqs. (5) and
(6), are almost identical is strong evidence that the micromecha-
nism causing the strain nonlinearity is the same as that resulting
in Wd. Hence, for example, microcracking as a possible mechanism
for Wd can be safely excluded. Lastly, and with the exceptions of
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2˛.

he two un-annealed solid solution compositions, all the ˝/b val-
es are reasonable and comparable to the only reported value of a
RSS in a MAX phase measured on quasi-single crystals, viz. 36 MPa

or Ti3SiC2 [46].
At ≈(1–9) × 1013 m−2, the values of 	rev are reasonable given the

tresses applied. Recall that 	rev is not the dislocation density in
he sample when the load is removed, but rather that which is due
olely to the IKBs, given by Eq. (7). What is truly remarkable is that
he values of 	rev vary by less than an order of magnitude despite
he fact that the maximum applied stresses and G vary over a factor
f 2, and Nk values vary by more than two orders of magnitude
Table 3). This observation suggests that an equilibrium 	rev exists
o which all systems migrate. In solids with high G values and small
rains, many small IKBs form; in solids with low G values and coarse
rains, fewer, but larger, IKBs form.

As another check on the validity of our method, columns 10 and
1 in Table 3 compare, respectively, the calculated and measured
alues of εNL, where the former is calculated from Eq. (4). The agree-
ent between the two sets of results is quite good considering the
any simplifying assumptions made.
Lastly the choice of the value of w = 5b, needs to be addressed.

he minimum value of w is b. This value is impossible herein
ecause it results in 2˛ values that are unreasonable. For exam-
le, assuming w = b for Ti2AlC, implies – using Eq. (1) and M = 3 – a
˛ of the order of 100 �m, which is clearly not the case (see Fig. 3e).
ecall 2˛ is the thickness of the grains. Assuming w = 5b, implies
he width of the average grain in Fig. 3e to be 18 �m, which is pos-
ible. On the other extreme, assuming w = 20b, for Ti2Al(C0.5N0.5)
ields 2˛ values ≈1.8 �m, which is again not consistent with the
icrograph shown in Fig. 3c. Another more serious problem is that

uch small 2˛ values result in Nks that are so large – 1 × 1018 m−3 –
s to be difficult to rationalize and would render V × Nk – or vf > 1.
lso the distance between IKBs – estimated to be (1/Nk)1/3 – should
e of the order of a few microns at least since it is difficult to imag-

ne a much higher density. The values of (1/Nk)1/3 calculated here
nd listed in column 6 of Table 3 fall in the narrow and reasonable
ange of 1.3–5 �m.
Based on these considerations, we chose a value of 5b, which is
he same value we assumed for the Mg [10] and Co [9]. Note that the
hoice of w only affects the values of �c, 2˛ and Nk. If future research
esults in more accurate values of w, then these values would need
s and Compounds 498 (2010) 62–70 69

to be modified accordingly. More importantly, the choice of w does
not affect the values of ˝/b.

Finally we briefly discuss the importance of the results obtained
herein to designing compounds with large damping capabilities.
The answer, as discussed in a previous paper [8] depends on the
application and what stresses levels are anticipated. If the design
stresses are low, porous solids would be recommended. For high
stress applications, and severe environments, where porous solids
would not be suitable, either of the un-annealed solid solution com-
positions would yield the highest Wd values at the highest stresses.

6. Summary and conclusions

The ternaries, Ti3AlC2, Ti2AlC and their solid solutions, Ti3AlCN,
Ti2Al(C0.5N0.5) are KNE solids. Upon cyclic compression, fully, and
spontaneously reversible hysteretic stress strain loops are gener-
ated. The microscale model developed to explain kinking nonlinear
elasticity – in which εNL and Wd scale with �2 and Wd scales with εNL
– is in excellent agreement with the experimental results. In sharp
contrast to hexagonal metals, all the results shown here fall on
straight lines implying 2˛ not a function of stress, even at stresses of
the order of 650 MPa. The corresponding curves for coarse-grained
Mg and Co polycrystalline samples, one the other hand, clearly devi-
ate from linearity at higher stresses, suggesting that 2˛ is a function
of stress.

This work also confirms [1,2,9,10] that the following factors, all
embodied in Eq. (5), affect the size and shapes of the reversible
loops:

(a) Grain size: the larger the grain size, the larger 2˛ and the lower
the threshold stresses, which, for a given ˛, results in larger Wd
values. The size to which the dislocation loops can grow is also
larger.

(b) Matrix constraints or lack thereof: This factor, not well cap-
tured in our model, but related to the effective grain size, is
an important consideration that explain why, at a given stress,
porous solids can dissipate more energy than fully dense solids.
It also presumably explains why the two solid solution samples,
with bimodal distributions in their grain sizes were more resis-
tant to kinking, and yielded higher ˝/b values, than their larger
grained counterparts. Once the fine-grains were annealed out,
the kinking occurred at significantly lower �t values, with con-
comitantly lower ˝/b values.

(c) ˝/b: For a given εNL strain, the higher the ˝/b values the higher
Wd (Fig. 5c). The most important factor influencing ˝/b in this
work appears to be grain size (Fig. 6). The relationship between
2˛ and ˝/b appears to follow Hall-Petch’s.

(d) Because the ratio m1/m2 is proportional to ˝/b, it follows that
the same micromechanism, viz. IKBs, responsible for the non-
linear strain is also responsible for Wd.
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